Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
J Cogn Neurosci ; 36(4): 721-729, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37172133

Brain oscillations are involved in many cognitive processes, and several studies have investigated their role in cognition. In particular, the phase of certain oscillations has been related to temporal binding and integration processes, with some authors arguing that perception could be an inherently rhythmic process. However, previous research on oscillations mostly overlooked their spatial component: how oscillations propagate through the brain as traveling waves, with systematic phase delays between brain regions. Here, we argue that interpreting oscillations as traveling waves is a useful paradigm shift to understand their role in temporal binding and address controversial results. After a brief definition of traveling waves, we propose an original view on temporal integration that considers this new perspective. We first focus on cortical dynamics, then speculate about the role of thalamic nuclei in modulating the waves, and on the possible consequences for rhythmic temporal binding. In conclusion, we highlight the importance of considering oscillations as traveling waves when investigating their role in cognitive functions.


Brain Waves , Brain , Humans , Cognition
2.
Psychophysiology ; 61(4): e14487, 2024 Apr.
Article En | MEDLINE | ID: mdl-38015102

While physical performance has long been thought to be limited only by physiological factors, many experiments denote that psychological ones can also influence it. Specifically, the deception paradigm investigates the effect of psychological factors on performance by manipulating a psychological variable unbeknownst to the subjects. For example, during a physical exercise performed to failure, previous results revealed an improvement in performance (i.e., holding time) when the clock shown to the subjects was deceptively slowed down. However, the underlying neurophysiological changes supporting this performance improvement due to deceptive time manipulation remain unknown. Here, we addressed this issue by investigating from a neuromuscular perspective the effect of a deceptive clock manipulation on a single-joint isometric task conducted to failure in 24 healthy participants (11 females). Neuromuscular fatigue was assessed by pre- to post-exercise changes in quadriceps maximal voluntary torque (Tmax ), voluntary activation level (VAL), and potentiated twitch (TTW ). Our main results indicated a significant performance improvement when the clock was slowed down (Biased: 356 ± 118 s vs. Normal: 332 ± 112 s, p = .036) but, surprisingly, without any difference in the associated neuromuscular fatigue (p > .05 and BF < 0.3 for Tmax , VAL, and TTW between both sessions). Computational modeling showed that, when observed, the holding time improvement was explained by a neuromuscular fatigue accumulation based on subjective rather than actual time. These results support a psychological influence on neuromuscular processes and contribute significantly to the literature on the mind-body influence, by challenging our understanding of fatigue.


Isometric Contraction , Muscle Fatigue , Female , Humans , Muscle Fatigue/physiology , Isometric Contraction/physiology , Quadriceps Muscle/physiology , Exercise/physiology , Physical Functional Performance , Electromyography , Muscle, Skeletal/physiology
3.
Elife ; 122023 03 06.
Article En | MEDLINE | ID: mdl-36876909

Previous research has associated alpha-band [8-12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N = 16, two previously published datasets with N = 16 and N = 31). Participants were instructed to detect a brief target by covertly attending to the screen's left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with and without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.


Alpha Rhythm , Space Perception , Humans , Alpha Rhythm/physiology , Space Perception/physiology , Functional Laterality/physiology , Visual Perception/physiology , Occipital Lobe/physiology , Photic Stimulation , Electroencephalography
4.
Proc Natl Acad Sci U S A ; 120(13): e2218949120, 2023 03 28.
Article En | MEDLINE | ID: mdl-36940333

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.


Hallucinogens , N,N-Dimethyltryptamine , Humans , N,N-Dimethyltryptamine/pharmacology , Hallucinogens/pharmacology , Magnetic Resonance Imaging , Brain , Electroencephalography
5.
Neural Netw ; 157: 280-287, 2023 Jan.
Article En | MEDLINE | ID: mdl-36375346

Brain-inspired machine learning is gaining increasing consideration, particularly in computer vision. Several studies investigated the inclusion of top-down feedback connections in convolutional networks; however, it remains unclear how and when these connections are functionally helpful. Here we address this question in the context of object recognition under noisy conditions. We consider deep convolutional networks (CNNs) as models of feed-forward visual processing and implement Predictive Coding (PC) dynamics through feedback connections (predictive feedback) trained for reconstruction or classification of clean images. First, we show that the accuracy of the network implementing PC dynamics is significantly larger compared to its equivalent forward network. Importantly, to directly assess the computational role of predictive feedback in various experimental situations, we optimize and interpret the hyper-parameters controlling the network's recurrent dynamics. That is, we let the optimization process determine whether top-down connections and predictive coding dynamics are functionally beneficial. Across different model depths and architectures (3-layer CNN, ResNet18, and EfficientNetB0) and against various types of noise (CIFAR100-C), we find that the network increasingly relies on top-down predictions as the noise level increases; in deeper networks, this effect is most prominent at lower layers. All in all, our results provide novel insights relevant to Neuroscience by confirming the computational role of feedback connections in sensory systems, and to Machine Learning by revealing how these can improve the robustness of current vision models.


Machine Learning , Neural Networks, Computer , Feedback , Vision, Ocular , Visual Perception , Image Processing, Computer-Assisted/methods
6.
Neural Comput ; 34(5): 1075-1099, 2022 04 15.
Article En | MEDLINE | ID: mdl-35231926

Visual understanding requires comprehending complex visual relations between objects within a scene. Here, we seek to characterize the computational demands for abstract visual reasoning. We do this by systematically assessing the ability of modern deep convolutional neural networks (CNNs) to learn to solve the synthetic visual reasoning test (SVRT) challenge, a collection of 23 visual reasoning problems. Our analysis reveals a novel taxonomy of visual reasoning tasks, which can be primarily explained by both the type of relations (same-different versus spatial-relation judgments) and the number of relations used to compose the underlying rules. Prior cognitive neuroscience work suggests that attention plays a key role in humans' visual reasoning ability. To test this hypothesis, we extended the CNNs with spatial and feature-based attention mechanisms. In a second series of experiments, we evaluated the ability of these attention networks to learn to solve the SVRT challenge and found the resulting architectures to be much more efficient at solving the hardest of these visual reasoning tasks. Most important, the corresponding improvements on individual tasks partially explained our novel taxonomy. Overall, this work provides a granular computational account of visual reasoning and yields testable neuroscience predictions regarding the differential need for feature-based versus spatial attention depending on the type of visual reasoning problem.


Neural Networks, Computer , Problem Solving , Humans , Learning
8.
Neurosci Conscious ; 2021(1): niab007, 2021.
Article En | MEDLINE | ID: mdl-33815830

Alpha rhythms (∼10Hz) in the human brain are classically associated with idling activities, being predominantly observed during quiet restfulness with closed eyes. However, recent studies demonstrated that alpha (∼10Hz) rhythms can directly relate to visual stimulation, resulting in oscillations, which can last for as long as one second. This alpha reverberation, dubbed perceptual echoes (PE), suggests that the visual system actively samples and processes visual information within the alpha-band frequency. Although PE have been linked to various visual functions, their underlying mechanisms and functional role are not completely understood. In this study, we investigated the relationship between conscious perception and the generation and the amplitude of PE. Specifically, we displayed two coloured Gabor patches with different orientations on opposite sides of the screen, and using a set of dichoptic mirrors, we induced a binocular rivalry between the two stimuli. We asked participants to continuously report which one of two Gabor patches they consciously perceived, while recording their EEG signals. Importantly, the luminance of each patch fluctuated randomly over time, generating random sequences from which we estimated two impulse-response functions (IRFs) reflecting the PE generated by the perceived (dominant) and non-perceived (suppressed) stimulus, respectively. We found that the alpha power of the PE generated by the consciously perceived stimulus was comparable with that of the PE generated during monocular vision (control condition) and higher than the PE induced by the suppressed stimulus. Moreover, confirming previous findings, we found that all PEs propagated as a travelling wave from posterior to frontal brain regions, irrespective of conscious perception. All in all our results demonstrate a correlation between conscious perception and PE, suggesting that the synchronization of neural activity plays an important role in visual sampling and conscious perception.

9.
eNeuro ; 8(1)2021.
Article En | MEDLINE | ID: mdl-33239271

The development of deep convolutional neural networks (CNNs) has recently led to great successes in computer vision, and CNNs have become de facto computational models of vision. However, a growing body of work suggests that they exhibit critical limitations on tasks beyond image categorization. Here, we study one such fundamental limitation, concerning the judgment of whether two simultaneously presented items are the same or different (SD) compared with a baseline assessment of their spatial relationship (SR). In both human subjects and artificial neural networks, we test the prediction that SD tasks recruit additional cortical mechanisms which underlie critical aspects of visual cognition that are not explained by current computational models. We thus recorded electroencephalography (EEG) signals from human participants engaged in the same tasks as the computational models. Importantly, in humans the two tasks were matched in terms of difficulty by an adaptive psychometric procedure; yet, on top of a modulation of evoked potentials (EPs), our results revealed higher activity in the low ß (16-24 Hz) band in the SD compared with the SR conditions. We surmise that these oscillations reflect the crucial involvement of additional mechanisms, such as working memory and attention, which are missing in current feed-forward CNNs.


Attention , Electroencephalography , Cognition , Humans , Memory, Short-Term , Problem Solving
10.
Sci Rep ; 10(1): 22172, 2020 12 17.
Article En | MEDLINE | ID: mdl-33335190

In recent years artificial neural networks achieved performance close to or better than humans in several domains: tasks that were previously human prerogatives, such as language processing, have witnessed remarkable improvements in state of the art models. One advantage of this technological boost is to facilitate comparison between different neural networks and human performance, in order to deepen our understanding of human cognition. Here, we investigate which neural network architecture (feedforward vs. recurrent) matches human behavior in artificial grammar learning, a crucial aspect of language acquisition. Prior experimental studies proved that artificial grammars can be learnt by human subjects after little exposure and often without explicit knowledge of the underlying rules. We tested four grammars with different complexity levels both in humans and in feedforward and recurrent networks. Our results show that both architectures can "learn" (via error back-propagation) the grammars after the same number of training sequences as humans do, but recurrent networks perform closer to humans than feedforward ones, irrespective of the grammar complexity level. Moreover, similar to visual processing, in which feedforward and recurrent architectures have been related to unconscious and conscious processes, the difference in performance between architectures over ten regular grammars shows that simpler and more explicit grammars are better learnt by recurrent architectures, supporting the hypothesis that explicit learning is best modeled by recurrent networks, whereas feedforward networks supposedly capture the dynamics involved in implicit learning.


Behavior , Language , Learning , Models, Theoretical , Neural Networks, Computer , Adult , Cognition , Female , Humans , Male , Reaction Time , Reproducibility of Results , Young Adult
11.
eNeuro ; 7(6)2020.
Article En | MEDLINE | ID: mdl-33168617

Traveling waves have been studied to characterize the complex spatiotemporal dynamics of the brain. Several studies have suggested that the propagation direction of α traveling waves can be task dependent. For example, a recent electroencephalography (EEG) study from our group found that forward waves (i.e., occipital to frontal, FW waves) were observed during visual processing, whereas backward waves (i.e., frontal to occipital, BW waves) mostly occurred in the absence of sensory input. These EEG recordings, however, were obtained from different experimental sessions and different groups of subjects. To further examine how the waves' direction changes between task conditions, 13 human participants were tested on a target detection task while EEG signals were recorded simultaneously. We alternated visual stimulation (5-s display of visual luminance sequences) and resting state (5 s of black screen) within each single trial, allowing us to monitor the moment-to-moment progression of traveling waves. As expected, the direction of α waves was closely linked with task conditions. First, FW waves from occipital to frontal regions, absent during rest, emerged as a result of visual processing, while BW waves in the opposite direction dominated in the absence of visual inputs, and were reduced (but not eliminated) by external visual inputs. Second, during visual stimulation (but not rest), both waves coexisted on average, but were negatively correlated. In summary, we conclude that the functional role of α traveling waves is closely related with their propagating direction, with stimulus-evoked FW waves supporting visual processing and spontaneous BW waves involved more in top-down control.


Brain , Electroencephalography , Humans , Photic Stimulation , Rest , Visual Perception
13.
Elife ; 92020 10 12.
Article En | MEDLINE | ID: mdl-33043883

Psychedelic drugs are potent modulators of conscious states and therefore powerful tools for investigating their neurobiology. N,N, Dimethyltryptamine (DMT) can rapidly induce an extremely immersive state of consciousness characterized by vivid and elaborate visual imagery. Here, we investigated the electrophysiological correlates of the DMT-induced altered state from a pool of participants receiving DMT and (separately) placebo (saline) while instructed to keep their eyes closed. Consistent with our hypotheses, results revealed a spatio-temporal pattern of cortical activation (i.e. travelling waves) similar to that elicited by visual stimulation. Moreover, the typical top-down alpha-band rhythms of closed-eyes rest were significantly decreased, while the bottom-up forward wave was significantly increased. These results support a recent model proposing that psychedelics reduce the 'precision-weighting of priors', thus altering the balance of top-down versus bottom-up information passing. The robust hypothesis-confirming nature of these findings imply the discovery of an important mechanistic principle underpinning psychedelic-induced altered states.


Alpha Rhythm/physiology , Brain/physiology , Consciousness/drug effects , Hallucinogens/administration & dosage , N,N-Dimethyltryptamine/administration & dosage , Adult , Alpha Rhythm/drug effects , Brain/drug effects , Consciousness/physiology , Female , Hallucinogens/blood , Hallucinogens/pharmacology , Humans , Male , Middle Aged , N,N-Dimethyltryptamine/blood , N,N-Dimethyltryptamine/pharmacology , Young Adult
14.
PLoS Biol ; 17(10): e3000487, 2019 10.
Article En | MEDLINE | ID: mdl-31581198

Predictive coding is a key mechanism to understand the computational processes underlying brain functioning: in a hierarchical network, higher levels predict the activity of lower levels, and the unexplained residuals (i.e., prediction errors) are passed back to higher layers. Because of its recursive nature, we wondered whether predictive coding could be related to brain oscillatory dynamics. First, we show that a simple 2-level predictive coding model of visual cortex, with physiological communication delays between levels, naturally gives rise to alpha-band rhythms, similar to experimental observations. Then, we demonstrate that a multilevel version of the same model can explain the occurrence of oscillatory traveling waves across levels, both forward (during visual stimulation) and backward (during rest). Remarkably, the predictions of our model are matched by the analysis of 2 independent electroencephalography (EEG) datasets, in which we observed oscillatory traveling waves in both directions.


Alpha Rhythm/physiology , Models, Neurological , Nerve Net/physiology , Visual Cortex/physiology , Adult , Datasets as Topic , Electroencephalography , Female , Humans , Male , Photic Stimulation , Rest/physiology
15.
J Neurosci ; 39(27): 5369-5376, 2019 07 03.
Article En | MEDLINE | ID: mdl-31061089

Pupil size under constant illumination reflects brain arousal state, and dilates in response to novel information, or surprisal. Whether this response can be observed regardless of conscious perception is still unknown. In the present study, male and female adult humans performed an implicit learning task across a series of three experiments. We measured pupil and brain-evoked potentials to stimuli that violated transition statistics but were not relevant to the task. We found that pupil size dilated following these surprising events, in the absence of awareness of transition statistics, and only when attention was allocated to the stimulus. These pupil responses correlated with central potentials, evoking an anterior cingulate origin. Arousal response to surprisal outside the scope of conscious perception points to the fundamental relationship between arousal and information processing and indicates that pupil size can be used to track the progression of implicit learning.SIGNIFICANCE STATEMENT Pupil size dilates following increase in mental effort, surprise, or more generally global arousal. However, whether this response arises as a conscious response or reflects a more fundamental mechanism outside the scrutiny of awareness is still unknown. Here, we demonstrate that unexpected changes in the environment, even when processed unconsciously and without being relevant to the task, lead to an increase in arousal levels as reflected by the pupillary response. Further, we show that the concurrent electrophysiological response shares similarities with mismatch negativity, suggesting the involvement of anterior cingulate cortex. All in all, our results establish novel insights about the mechanisms driving global arousal levels, and it provides new possibilities for reliably measuring unconscious processes.


Arousal , Brain/physiology , Pupil/physiology , Unconscious, Psychology , Visual Perception/physiology , Adult , Attention/physiology , Awareness , Electroencephalography , Evoked Potentials , Female , Gyrus Cinguli/physiology , Humans , Male , Photic Stimulation , Young Adult
16.
Neuroimage ; 186: 424-436, 2019 02 01.
Article En | MEDLINE | ID: mdl-30458303

Motor decisions entails a buildup of choice-selective activity in the motor cortex. The rate of this buildup crucially depends on the amount of evidence favoring the selection of each action choice in the visual environment. Though numerous studies have characterized how sensory evidence drives motor activity when processed consciously, very little is known about the neural mechanisms that underlie the integration of implicit sources of information. Here, we used electroencephalography to investigate the impact of implicit visual cues on response-locked potentials and oscillatory activity in the motor cortex during decision-making. Subjects were required to select between left and right index finger responses according to the motion direction of a cloud of dots presented in one of three possible colors. Unbeknown to the participants, the color cue could bring evidence either in favor of or against the selection of the correct response. Implicit color cues tuned choice-selective oscillatory activity in the low beta range (16-25 Hz), boosting the buildup of contralateral activity when evidence favored the selection of the correct action, while weakening it when evidence biased against the correct response. This modulation of oscillatory activity influenced the speed at which the correct action was eventually chosen. Implicit cues also altered oscillatory activity in a non-selective way in the low frequency oscillation (1-7 Hz) and high beta ranges (25-35 Hz), impacting both contralateral and ipsilateral activity. The current findings yield a critical extension of prior observations by indicating that the integration of both explicit and implicit sources of evidence tunes oscillatory motor activity during decision-making.


Cues , Decision Making/physiology , Motor Cortex/physiology , Pattern Recognition, Visual/physiology , Psychomotor Performance , Adult , Brain Waves , Electroencephalography , Evoked Potentials , Female , Humans , Male , Motor Activity , Photic Stimulation , Young Adult
17.
Front Hum Neurosci ; 12: 427, 2018.
Article En | MEDLINE | ID: mdl-30459582

Visual attention allows relevant information to be selected for further processing. Both conscious and unconscious visual stimuli can bias attentional allocation, but how these two types of visual information interact to guide attention remains unclear. In this study, we explored attentional allocation during a motion discrimination task with varied motion strength and unconscious associations between stimuli and cues. Participants were instructed to report the motion direction of two colored patches of dots. Unbeknown to participants, dot colors were sometimes informative of the correct response. We found that subjects learnt the associations between colors and motion direction but failed to report this association using the questionnaire filled at the end of the experiment, confirming that learning remained unconscious. The eye movement analyses revealed that allocation of attention to unconscious sources of information occurred mostly when motion coherence was low, indicating that unconscious cues influence attentional allocation only in the absence of strong conscious cues. All in all, our results reveal that conscious and unconscious sources of information interact with each other to influence attentional allocation and suggest a selection process that weights cues in proportion to their reliability.

18.
Conscious Cogn ; 57: 106-115, 2018 01.
Article En | MEDLINE | ID: mdl-29207312

The present study investigated the influence of nociceptive stimuli on visual stimuli processing according to the relative spatial congruence between the two stimuli of different sensory modalities. Participants performed temporal order judgments on pairs of visual stimuli, one presented near the hand on which nociceptive stimuli were occasionally applied, the other one either to its left or to its right. The visual hemifield in which the stimulated hand and the near visual stimulus appeared was manipulated by changing gaze direction. The stimulated hemibody and the stimulated visual hemifield were therefore either congruent or incongruent, in terms of anatomical locations. Despite the changes in anatomical congruence, judgments were always biased in favor of the visual stimuli presented near the stimulated hand. This indicates that nociceptive-visual interaction may rely on a realignment of the respective initial anatomical representations of the somatic and retinotopic spaces toward an integrated, multimodal representation of external space.


Fixation, Ocular/physiology , Nociception/physiology , Space Perception/physiology , Visual Fields/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Personal Space , Young Adult
19.
Neuroimage ; 163: 34-40, 2017 12.
Article En | MEDLINE | ID: mdl-28899743

Neuroimaging studies have repeatedly emphasized the role of the supplementary motor area (SMA) in motor sequence learning, but interferential approaches have led to inconsistent findings. Here, we aimed to test the role of the SMA in motor skill learning by combining interferential and neuroimaging techniques. Sixteen subjects were trained on simple finger movement sequences for 4 days. Afterwards, they underwent two neuroimaging sessions, in which they executed both trained and novel sequences. Prior to entering the scanner, the subjects received inhibitory transcranial magnetic stimulation (TMS) over the SMA or a control site. Using multivariate fMRI analysis, we confirmed that motor training enhances the neural representation of motor sequences in the SMA, in accordance with previous findings. However, although SMA inhibition altered sequence representation (i.e. between-sequence decoding accuracy) in this area, behavioural performance remained unimpaired. Our findings question the causal link between the neuroimaging correlate of elementary motor sequence representation in the SMA and sequence generation, calling for a more thorough investigation of the role of this region in performance of learned motor sequences.


Learning/physiology , Motor Cortex/physiology , Motor Skills/physiology , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging , Male , Transcranial Magnetic Stimulation , Young Adult
20.
Sci Rep ; 7(1): 9712, 2017 08 29.
Article En | MEDLINE | ID: mdl-28852115

Complex regional pain syndrome (CRPS) is a chronic pain condition associating sensory, motor, trophic and autonomic symptoms in one limb. Cognitive difficulties have also been reported, affecting the patients' ability to mentally represent, perceive and use their affected limb. However, the nature of these deficits is still a matter of debate. Recent studies suggest that cognitive deficits are limited to body-related information and body perception, while not extending to external space. Here we challenge that statement, by using temporal order judgment (TOJ) tasks with tactile (i.e. body) or visual (i.e. extra-body) stimuli in patients with upper-limb CRPS. TOJ tasks allow characterizing cognitive biases to the advantage of one of the two sides of space. While the tactile TOJ tasks did not show any significant results, significant cognitive biases were observed in the visual TOJ tasks, affecting mostly the perception of visual stimuli occurring in the immediate vicinity of the affected limb. Our results clearly demonstrate the presence of visuospatial deficits in CRPS, corroborating the cortical contribution to the CRPS pathophysiology, and supporting the utility of developing rehabilitation techniques modifying visuospatial abilities to treat chronic pain.


Complex Regional Pain Syndromes/psychology , Perceptual Disorders/psychology , Space Perception , Visual Perception , Adult , Analysis of Variance , Complex Regional Pain Syndromes/diagnosis , Complex Regional Pain Syndromes/therapy , Female , Humans , Male , Middle Aged , Perceptual Disorders/diagnosis , Perceptual Disorders/therapy , Photic Stimulation , Psychometrics , Touch
...